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A B S T R A C T

Wood is a versatile and renewable resource, widely used across industries, yet the increasing demand has led
to illegal logging with severe environmental, social, and economic consequences. To reduce illegal wood trade
and its associated threats to biodiversity, robust methods for wood species identification and accurate datasets
are crucial. In recent years, there have been significant advances in this area, but many current techniques
face challenges such as high costs, the need for skilled experts for data interpretation, and the lack of good
datasets for professional reference. Therefore, most of these methods, and certainly the wood anatomical
assessment, may benefit from tools based on Artificial Intelligence. In this paper, we apply two transfer
learning techniques with Convolutional Neural Networks (CNNs) to a multi-view Congolese wood species
dataset including sections from different orientations and viewed at different microscopic magnifications. We
explore two feature extraction methods in detail, namely Global Average Pooling (GAP) and Random Encoding
of Aggregated Deep Activation Maps (RADAM), for efficient and accurate wood species identification. Our
results indicate superior accuracy on diverse datasets and anatomical sections, surpassing the results of other
methods. Our proposal represents a significant advancement in wood species identification, offering a robust
tool to support the conservation of forest ecosystems and promote sustainable forestry practices.
1. Introduction

Wood is a versatile and renewable resource that can be produced
in a sustainable way. It is widely used in many industries such as
construction, furniture and paper production. The global demand for
wood has led to the emergence of illegal logging and trade, having
environmental, social, and economic repercussions. Illegal wood trade
represents a significant portion of global wood trade, with percent-
ages increasing in regions such as Southeast Asia, Central Africa, and
South America (May and Global Financial Integrity, 2017). This illicit
trade, worth billions of dollars annually, also threatens ecosystems
due to the over-exploitation of rare and protected species. To combat
this issue, various protection measures, such as the Convention on
International Trade in Endangered Species of Wild Fauna and Flora
(CITES) (United Nations, 2024), and policy measures like the European
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Union Timber Regulation (EUTR) and the U.S. Lacey Act have been
implemented (ITTO, 2020).

The effective implementation of the above policies and regulations
also requires efficient methods for identifying wood species as well as
robust datasets. Currently, wood species identification is primarily done
through wood anatomical analysis, which involves the examination of
tissue and cell diagnostic features using various imaging tools such as
hand lenses, light or electronic microscopes, 2D and 3D scans, among
others. Also, the International Association of Wood Anatomists (IAWA)
has developed a list of standardized microscopic diagnostic features
that can be used to identify hardwood species based on anatomical
patterns, such as vessels, rays, parenchyma, and fibers (Wheeler et al.,
1989). Although this approach is widely applied, readily available,
and cost-effective, it can sometimes fail to distinguish between closely
related taxa or determine the exact species (Dormontt et al., 2015;
Gasson, 2011).
https://doi.org/10.1016/j.compag.2024.109867
Received 12 April 2024; Received in revised form 24 October 2024; Accepted 21 D
vailable online 20 January 2025 
168-1699/© 2024 Published by Elsevier B.V. 
ecember 2024

https://www.elsevier.com/locate/compag
https://www.elsevier.com/locate/compag
https://orcid.org/0000-0001-9395-6287
https://orcid.org/0000-0002-3876-620X
mailto:kallil@usp.br
https://doi.org/10.1016/j.compag.2024.109867
https://doi.org/10.1016/j.compag.2024.109867
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2024.109867&domain=pdf


K.M. Zielinski et al.

e

a
e
R
f
a
k
m

i
t

h
f
f
y

d
i

f

B
i
(

w
t

t

c
u
i
f

w
o

e
t
S
a

2

1

f

i
l

i
b

A

f
R

w
s

b

a
a

i

i
p
s

w

w

s
e
R
u
o
a
m
8

r

Computers and Electronics in Agriculture 231 (2025) 109867 
Alternative methods for wood species identification have been grad-
ually developed, including DNA analysis, Near Infrared spectroscopy,
and Direct Analysis in Real Time (DART) mass spectrometry (Braga
t al., 2011; Hassold et al., 2016; Pastore et al., 2011; Price et al.,

2021; Jiao et al., 2018). These methods show promising results but
re still hindered by factors such as high costs, the need for skilled
xperts for data interpretation, and the lack of reference datasets.
ecently, pattern recognition techniques employing machine vision

or automated wood species identification have emerged as a feasible
nd attractive solution. This approach is less dependent on expert
nowledge and can leverage existing datasets containing high-quality
icroscopy images (Nithaniyal et al., 2014; Hanssen et al., 2011).

The state-of-the-art in wood species identification has seen signif-
cant progress through the incorporation of automated classification
echniques based on macroscopic and microscopic images. Several stud-

ies (Zhao et al., 2014; Guang-Sheng and Peng, 2013; Khalid et al., 2011)
ave indeed reported promising results. However, these studies either
ocus on a limited number of species or rely on morphological wood
eatures, which are dependent on segmentation and may consequently
ield variable outcomes.

Texture analysis has emerged as a promising technique, as it can
escribe the spatial organization of pixels and the variation of patterns
n an area on the surface of the studied object. Filho et al. (2014), Wang

et al. (2013) used texture attributes derived from macroscopic images
or wood species identification. Martins et al. (2012), Cavalin et al.

(2013) employed texture features to identify wood species from the
razilian flora using microscopic transverse cross-sections. These stud-

es made use of Local Phase Quantization (LPQ), Local Binary Patterns
LBP) and gray-level co-occurrence matrices as feature descriptors.

Various computer vision models have been employed to automate
ood species identification using digital imagery of anatomical sec-

ions. These models typically involve collecting a representative dataset
of labeled digital images, applying a feature extraction procedure, and
raining a machine learning classification algorithm. Martins et al.

(2013) achieved an accuracy of 86% using LBP as a feature descriptor
ombined with Support Vector Machines (SVMs). Filho et al. (2014)
sed a strategy of dividing the image into sub-images, classifying them
ndependently using SVMs, and fusing the class probabilities through a
usion rule, achieving an accuracy of 97.77% for 41 different species.

Recent studies have also employed deep convolutional neural net-
orks (CNNs) for wood species identification. Ravindran et al. (2018)
btained an accuracy of 87.4% using CNNs on a dataset of 2303 macro-

scopic images from the Meliaceae family. Another work (Ravindran
t al., 2020) proposed a CNN model with a ResNet34 backbone and
wo linear layers to identify 12 common wood species in the United
tates based on macroscopic imagery of transverse sections reaching
n accuracy of 97.7%. Lens et al. (2020) proposed four different pre-

trained CNN architectures, achieving a similar accuracy of over 98% on
240 images from 112 species using the ResNet101 backbone. Wu et al.

(2021) utilized two highly effective CNNs (ResNet50 and DenseNet121)
for hardwood lumber identification, reaching an accuracy of 98.2% on
1 common hardwood species classification tasks.

The application of transfer learning has become increasingly ef-
ective in wood species identification. This method uses models pre-

trained on large datasets, allowing for fine-tuning for specific wood tex-
tures. For instance, Tajbakhsh et al. (2020) showed that transfer learn-
ng can enhance the performance of deep learning models even when
imited labeled data are available. Zhao et al. (2019) employed transfer

learning with a pre-trained CNN model for wood species identification,
achieving an accuracy of 95.2% on a dataset of 1832 macroscopic
images from 32 species. This approach not only yielded impressive clas-
sification results but also reduced the time and computational resources
required for training the model. Recent work (Herrera-Poyatos et al.,
2024) adopted this approach for wood species identification with NIR
spectroscopy and CNNs. Nieradzik et al. (2024) used a YOLO network
to detect key vessel elements in microscopic wood images. Zheng et al.
2 
(2024) employed a database of wood species containing two anatom-
cal sections to classify 15 different wood species using a pre-trained
ackbone followed by a Region CNN (R-CNN) method.

Despite significant advances in wood species identification, the
frican continent, particularly the Congo Basin, remains underrepre-

sented. To address this gap, we leverage the timber species dataset
rom the Democratic Republic of Congo (DRC) provided by the Belgian
oyal Museum for Central Africa (RMCA) (Biodiversity, 2019), focusing

on texture features extracted from distinct microscopic cross sections,
which have been shown to have strong discriminative abilities in
works by da Silva et al. (2017), da Silva et al. (2022). The present

ork applies pre-trained CNN models to this dataset to enhance wood
pecies identification. While previous methods, such as the LPQ ap-

proach (Ojansivu and Heikkilä, 2008) combined with random forest
classifiers, have shown promising results (da Silva et al., 2022), we
propose two approaches that use pre-trained models to further improve
the efficiency and accuracy of wood species identification.

The first approach employs a serial activation map fusion using
Global Average Pooling (GAP) on a backbone CNN model that has
een pre-trained on ImageNet (Deng et al., 2009). This allows us to

benefit from a richer set of feature representations learned on diverse
images. The second approach involves the use of RADAM (Random
encoding of Aggregated Deep Activation Maps), a feature extractor
based on randomized auto-encoders that has demonstrated state-of-
the-art accuracy on texture recognition tasks (Scabini et al., 2023). By
incorporating RADAM into our wood species identification pipeline, we
im to further optimize the classification performance by exploiting the
dvanced learning capabilities of this approach.

Through the implementation of the above approaches, we seek to
mprove upon the results achieved by da Silva et al. (2022) and con-

tribute to the development of more efficient and more accurate wood
species identification models, ultimately promoting the protection and
conservation of forest ecosystems.

2. Materials and methods

This section presents the materials and methods used in our study,
ncluding the dataset, the feature extraction methods adopted and the
arameters of the experimental configurations employed. The following
ubsections provide a detailed overview of these components.

2.1. Datasets

This research uses the timber species dataset from the DRC, which
as assembled by da Silva et al. (2017). This dataset includes 77

different Congolese timber species, which are listed in Table 1 along
ith the number of images per class. Each species has images from

three distinct anatomical planes: tangential, transversal and radial. The
ections were cut with a sliding microtome, dehydrated in a graded
thanol series (50%, 75%, 96% and 100%), and fixed with Euparal.
GB images were acquired using a light microscope (Olympus BX60)
sing CellB software at 2.5× magnification. Each image has a resolution
f 1000 × 1000 pixels corresponding to 1388.88 ×1388.88 μm. This
pproach offers a comprehensive view of each species, facilitating a
ore accurate identification. In summary, the dataset is composed of
05 images for each anatomical plane. Fig. 1 displays an illustrative

representation of the images from each anatomical section in this
dataset, which shows the different visual characteristics present in each
anatomical plane.

The dataset contains an average of 10 images per class, which is
elatively low for machine learning tasks. To overcome this limitation,

da Silva et al. (2022) applied data augmentation techniques to increase
the number of images per class. Starting from the original dataset
consisting of 1000 × 1000 pixel images, they created three additional
datasets with different image dimensions and transformations:
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Fig. 1. Representation of each anatomical section of a wood sample from the species Afzelia africana. The arrows point from the respective regions on the sample (transversal,
tangential, and radial) to their corresponding images. Each image offers unique structural characteristics that are crucial for wood species identification.
.

Table 1
Names of the species and number of images for each anatomical section of the dataset

Species Images Species Images

Afzelia africana 9 Afzelia bella 5
Afzelia bipindensis 8 Afzelia cuanzensis 8
Afzelia pachyloba 8 Albizia adianthifolia 17
Albizia antunesiana 10 Albizia ferruginea 14
Alstonia boonei 12 Amphimas ferrugineus 8
Amphimas pterocarpoides 9 Anthonotha macrophylla 7
Antiaris toxicaria 12 Antrocaryon nannanii 17
Autranella congolensis 8 Beilschmiedia congolana 10
Brachystegia laurentii 7 Canarium schweinfurthii 13
Ceiba pentandra 6 Celtis gomphophylla 11
Chrysophyllum africanum 4 Chrysophyllum lacourtianum 8
Copaifera mildbraedii 13 Cordia platythyrsa 8
Cynometra alexandri 15 Cynometra hankei 10
Diospyros crassiflora 10 Drypetes gossweileri 10
Ekebergia capensis 8 Entandrophragma angolense 20
Entandrophragma candollei 13 Entandrophragma cylindricum 14
Entandrophragma utile 17 Erythrophleum suaveolens 6
Ficus mucuso 8 Funtumia africana 15
Gilbertiodendron dewevrei 11 Guibourtia arnoldiana 8
Guibourtia demeusei 9 Hallea stipulosa 17
Holoptelea grandis 12 Irvingia grandifolia 14
Khaya anthotheca 14 Klainedoxa gabonensis 9
Leplaea cedrata 15 Leplaea laurentii 20
Leplaea thompsonii 5 Lophira alata 4
Lovoa trichilioides 11 Mammea africana 10
Milicia excelsa 12 Millettia laurentii 10
Morus mesozygia 7 Musanga cecropioides 12
Nauclea diderrichii 12 Nesogordonia kabingaensis 8
Newtonia leucocarpa 7 Ongokea gore 10
Pentaclethra eetveldeana 7 Pentaclethra macrophylla 9
Pericopsis elata 5 Petersianthus macrocarpus 11
Piptadeniastrum africanum 12 Pouteria aningeri 8
Prioria balsamifera 12 Prioria oxyphylla 14
Pterocarpus soyauxii 17 Pterocarpus tinctorius 10
Pycnanthus angolensis 4 Scorodophleus zenkeri 8
Staudtia kamerunensis 13 Terminalia superba 9
Tessmannia africana 13 Tieghemella heckelii 9
Triplochiton scleroxylon 10 Zanthoxylum gilletii 7
Zanthoxylum lemairei 12

• 1000 × 1000 (Original): This dataset contains 805 images per
anatomical section with a resolution of 1000 × 1000 pixels;
3 
• 1000 × 500: Each image from the original dataset was split into
two halves, doubling the total number of images;

• 500 × 500: The 1000 × 500 images were further split into four
sections, quadrupling the number of images from the original
dataset;

• 500 × 500-OGRN: Similar to the previous dataset, but with
transformations: the first image remains unaltered (O), the second
is smoothed with a Gaussian Filter (G), the third is rotated 90
degrees (R) and the fourth has added salt-and-pepper noise with
a density of 0.05 (N).

These augmented datasets not only increase the quantity of training
data but also introduce variations that enhance the robustness of ma-
chine learning models. Fig. 2 demonstrates the transformations applied
to the original 1000 × 1000 images.

2.2. Feature extraction methods

Texture analysis using CNNs typically adopts end-to-end models
that leverage a pre-trained backbone, followed by fine-tuning of the
architecture specific to the texture recognition problem at hand. In
contrast, this paper employs two approaches that use the backbone only
as a feature extractor with a dedicated classifier applied to the resulting
features. Notably, this process eliminates the need for fine-tuning of the
architecture.

2.2.1. GAP
The first approach considered involves using GAP computed over

the activation maps produced by the last layer of the backbone, which
are subsequently fed to an SVM classifier (Cortes and Vapnik, 1995).
The function representing the pre-trained backbone is denoted as 𝑓 ,
and the input image from each of the anatomical planes (tangential,
transversal, and radial) as 𝑋T, 𝑋Tr , and 𝑋R, resp., with 𝑋T, 𝑋Tr , 𝑋R ∈
R𝑤0×ℎ0×3. Features are extracted from the last layer of the backbone as
follows:

𝑍T = 𝑓 (𝑋T), 𝑍Tr = 𝑓 (𝑋Tr ), 𝑍R = 𝑓 (𝑋R) . (1)

For each wood sample, there are three feature vectors corresponding
to the three anatomical planes. These features can be combined in two
ways:
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Fig. 2. Illustration of the data augmentation techniques employed for each sub-dataset. (a) 1000 × 1000 original dataset, (b) 1000 × 500 dataset with each image halved, (c)
500 × 500 dataset with each original image split into four equal parts, and (d) 500 × 500 - OGRN dataset demonstrating the applied transformations including original (O),
Gaussian smoothing (G), 90-degree rotation (R), and salt-and-pepper noise addition (N).
1. Serial Feature Concatenation (SFC): We concatenate the fea-
ture vectors end-to-end. This can be defined mathematically
as:

𝑍𝑠 = [𝑍T, 𝑍Tr , 𝑍R] . (2)

2. Parallel Feature Merging (PFM): We perform an element-wise
summation of the feature vectors:

𝑍𝑝 = 𝑍T ⊕ 𝑍Tr ⊕ 𝑍R . (3)

Finally, the combined features (𝑍𝑠 or 𝑍𝑝) are used as input to an
SVM classifier. Let ℎ denote the SVM, then the predicted class label is
given by:

�̂� = ℎ(𝑍𝑠) or �̂� = ℎ(𝑍𝑝) . (4)

2.2.2. RADAM
The second approach adopted is RADAM (Scabini et al., 2023),

which significantly differs from GAP. Instead of considering only the
last layer of a pre-trained backbone, RADAM takes into account mul-
tiple activation maps at different depths in the architecture. This ap-
proach allows to capture various levels of texture characteristics, from
simple to complex features.

In the RADAM method, the features are combined through a specific
sequence of steps, including a Randomized Autoencoder (RAE) (Kasun
et al., 2013; Cambria et al., 2013). A RAE is a type of neural network
that consists of one hidden layer and aims to reproduce its input as
target output, i.e., 𝑌 = 𝑋. The input weights of the RAE are randomly
4 
generated using a Linear Congruential Generator (LCG) (Knuth, 1997).
After training the RAE using the least-squares method, the output
weights are used as features in our approach, as described below.

Each step of the RADAM method is described as follows. The
function representing the pre-trained backbone is denoted as 𝑓 , and
its intermediate activation maps at different depths 𝑖 as 𝑓𝑖. Each depth
level corresponds to the output of a specific convolutional block in the
backbone. For each input image of the three anatomical planes (𝑋T,
𝑋Tr and 𝑋R) and each depth 𝑖, the corresponding activation map is
extracted:

𝐴T,𝑖 = 𝑓𝑖(𝑋T), 𝐴Tr,𝑖 = 𝑓𝑖(𝑋Tr ), 𝐴R,𝑖 = 𝑓𝑖(𝑋R) . (5)

Next, the depthwise 2𝑝-norm of the activation maps is computed,
which can be denoted as 𝑔. The computed norms for the three anatom-
ical planes at depth 𝑖 are given by:

𝑁T,𝑖 = 𝑔(𝐴T,𝑖), 𝑁Tr,𝑖 = 𝑔(𝐴Tr,𝑖), 𝑁R,𝑖 = 𝑔(𝐴R,𝑖) . (6)

These norms are then concatenated along the third dimension (channel
dimension 𝑧𝑖). However, since the spatial dimensions (𝑤𝑖 and ℎ𝑖) of the
activation maps might differ across different depths, the spatial dimen-
sion of all activation maps are resized to the same spatial size using
bilinear interpolation. The concatenations of the normalized activation
maps for the three anatomical planes are denoted as:

𝐶T =
𝑛

⨁

𝑖=1
𝑁T,𝑖, 𝐶Tr =

𝑛
⨁

𝑖=1
𝑁Tr,𝑖, 𝐶R =

𝑛
⨁

𝑖=1
𝑁R,𝑖 , (7)

where ⨁ denotes the concatenation operation along the third dimen-
sion for each computed anatomical section norm, with 𝑖 varying from 1
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Fig. 3. Methodological process employed in this study. Anatomical sections are input to a pre-trained backbone to extract feature blocks. These blocks are then fused and classified
using an SVM to produce the final wood species prediction.
Table 2
Number of parameters for each backbone, respective GFLOPs, and average image
processing time for GAP and RADAM methods.

Backbone N. of
params
(millions)

GFLOPs Avg. image
processing time (ms)

GAP RADAM

ResNet-18 11.7 1.8 2.565 9.757
ResNet-50 25.5 4.1 5.979 24.735
ConvNext Large 230 34.4 35.509 239.738
ConvNext XLarge 392 60.9 61.105 316.939

to 𝑛, and 𝑛 representing the number of depths considered in the RADAM
approach.

Next, a set of 𝑚 RAEs are applied to the concatenated activation
maps 𝐶T, 𝐶Tr and 𝐶R. The projection obtained by the output weights of
each RAE is considered as the encoded representation of the activation
map. This representation is denoted as 𝑟𝑗 for the 𝑗th RAE:

𝑍T,𝑖 = 𝑟𝑗 (𝐶T), 𝑍Tr,𝑗 = 𝑟𝑗 (𝐶Tr ), 𝑍R,𝑗 = 𝑟𝑗 (𝐶R) . (8)

After repeating this process for 𝑚 RAEs, the representations are com-
bined using the PFM strategy, summating the features for each anatom-
ical section image:

𝑍T =
𝑚
∑

𝑗=1
𝑍T,𝑗 , 𝑍Tr =

𝑚
∑

𝑗=1
𝑍Tr,𝑗 , 𝑍R =

𝑚
∑

𝑗=1
𝑍R,𝑗 . (9)

In a last step before inputting these features into a classifier, the
features of all three anatomical sections are combined using the SFC
or PFM strategy just as for GAP (see Eqs. (2) and (3)). Finally, these
combined features serve as input to an SVM classifier, which performs
the final classification task.

In order to facilitate the understanding of the overall process,
Fig. 3 shows the methodology adopted in this paper. The individual
anatomical sections (radial, tangential and transversal) are first input
through the pre-trained backbone, resulting in their respective feature
blocks. These features are then combined through SFC or PFM, forming
a unified feature representation. This feature representation is then
passed through an SVM classifier for final wood species classification.
The output of the model is the predicted wood species, derived from
the combined and classified features of the three anatomical sections.

2.3. Experimental configuration

This section describes the experimental setup, including the li-
braries, parameters of the methods and classification algorithms used
in this study.
5 
2.3.1. Hardware and software
All experiments were performed on a machine with a GTX 1080ti,

Intel Core i7-7820X 3.60 GHz processor (using 8 threads), and 64 GB
of RAM. The feature extraction methods were implemented using
PyTorch (Paszke et al., 2019). To investigate the performance of
some backbones on our dataset, the library Pytorch Image Models
(TIMM) (Wightman, 2019) was employed, which includes a wide-
range of pre-trained computer vision backbones. The classification
process was realized through the use of the SVM implementation in
the Scikit-learn (Pedregosa et al., 2011) library.

2.3.2. Backbones
Experiments were made with four different pre-trained backbones

for our feature extraction methods. Specifically, ResNets (He et al.,
2016) (18 and 50) were used, both of which provide five distinct
depths for feature extraction. In addition to ResNets, two variants of the
ConvNext architecture (Liu et al., 2022) were considered: ConvNext-
Large-In21k and ConvNext-Xlarge-In21k. Both are pre-trained on the
ImageNet-21k dataset, and have four different feature extraction
depths. To further detail the complexity of each backbone, Table 2
outlines their number of parameters and GFLOPs.

The average image processing time for both GAP and RADAM was
measured using a batch size of 1, with the sampling based on the
average processing time for all images across a complete epoch. The
experiments were conducted on the GPU detailed in Section 2.3.1.
These results highlight the computational efficiency of each back-
bone when used with the respective feature extraction methods. No-
tably, while we compare dataset sizes of 1000 ×1000, 1000× 500, and
500 × 500, the processing time remained consistent, as each image
is resized to 224 × 224 before input into the CNN. Consequently,
the observed increase in total processing time when comparing larger
datasets (e.g., 1000 × 1000 vs. 1000 × 500) is proportional to the
number of images rather than their original dimensions, since the
feature extraction process is applied to each image independently.

2.3.3. RADAM and feature extraction configuration
The feature extraction methods in this study are applied to images

with a 224 × 224 resolution to reduce the computational cost. In
addition, the RADAM method incorporates the use of 4 RAEs, following
the configuration suggested by the authors (Scabini et al., 2023), which
provides a balance between performance and computational cost.

The performance of the different backbones was evaluated across
three combinations of anatomical sections: Transversal only, Transver-
sal + Tangential and Transversal + Tangential + Radial. Moreover,
for each of these section combinations, the performance of both fea-
ture fusion strategies described in Section 2.2, i.e., Serial Feature
Concatenation (SFC) and Parallel Feature Merging (PFM) was also
compared.
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Table 3
Accuracies (expressed as percentages) and standard deviations of SVM using GAP features for
each individual anatomical section, dataset and backbone. The best results on each dataset are
highlighted in bold.

Backbone

Dataset Section Resnet18 Resnet50 Convnext Large Convnext XLarge

Original Tr 67.00±0.90 61.70±0.50 79.90±1.10 82.20±1.10
T 74.50±0.60 67.30±0.80 87.30±0.80 88.20±0.60
R 57.30±0.90 52.40±0.70 75.40±1.20 77.60±0.80

1000 × 500 Tr 85.70±0.50 82.70±0.40 96.10±0.30 96.30±0.40
T 82.60±0.40 82.20±0.20 95.00±0.60 95.40±0.40
R 75.30±0.50 73.30±0.40 91.00±0.40 91.50±0.40

500 × 500 Tr 91.00±0.30 90.20±0.40 98.10±0.10 98.70±0.20
T 88.30±0.40 89.60±0.30 97.40±0.20 97.50±0.10
R 76.90±0.30 79.00±0.20 93.10±0.20 92.90±0.30

500 × 500-OGRN Tr 78.40±0.50 74.90±0.80 91.50±0.40 92.60±0.50
T 79.60±0.70 78.50±0.30 91.50±0.50 93.50±0.40
R 60.60±0.50 61.70±0.50 82.80±0.50 83.70±0.50
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2.3.4. Classification process
The SVM was used as the primary classification algorithm for this

tudy with a linear kernel and 𝐶 = 1, and no hyperparameter tuning
as done. For each of the datasets detailed in Section 2.1, a 10-fold

cross-validation strategy was used, and the classification process was
repeated 10 times to ensure a comprehensive evaluation of the SVM’s
performance across datasets. Furthermore, the average accuracy and its
tandard deviation was computed over the 10 repetitions. These were

the key metrics for assessing the performance of our proposed models.
This provides a balanced view of the model’s performance, taking into
account both the model’s correctness and consistency across different
runs.

3. Results

This section present and discuss the results obtained with each of
he two feature extraction models.

3.1. GAP results

In the first phase of the investigation with GAP, the approach
was explored by analyzing the accuracies achieved for each individual
anatomical section, across all datasets and backbones. This examination
provides detailed insights into the strength and performance of GAP
when applied to separate anatomical sections and aids in identifying
the contribution of each section toward the overall accuracy in species
identification. The results for each anatomical section (Transversal (Tr),
Tangential (T), and Radial (R)) are presented in Table 3, across all
four datasets: Original (1000 × 1000), 1000 × 500, 500 × 500 and
500 × 500-OGRN and for each backbone in Table 2.

The results indicate that the Tr and 𝑇 anatomical sections provide
more discriminative power for GAP in comparison to the radial (R)
section. This could be attributed to the unique cellular arrangement and
structures visible in the transversal and tangential sections, which may
provide more distinctive features for the identification process. The
radial section, while still providing valuable insights, seems to exhibit a
less discriminative performance, possibly due to its inherent similarity
among various species.

There are also some interesting insights that can be derived from
he classification results of the individual anatomical sections.

The results for each anatomical section show different misclassifica-
ion patterns. For instance, for the transversal section (Fig. 4a), Chrys-
phyllum africanum tends to be confused with Pentaclethra eetveldeana.
or the tangential section (Fig. 4b), confusion between Klainedoxa gabo-
nensis and Lophira alata is frequent. Lastly, the radial section (Fig. 4c)
demonstrates lower classification accuracy, with Newtonia leucocarpa
being misclassified due to less distinct anatomical characteristics. These
results indicate that certain anatomical sections, such as the transver-
sal and tangential sections, provide more discriminative features for
species identification, while the radial section poses more challenges for
6 
the model. Misclassifications can often be attributed to similarities in
cellular structures, such as vessel arrangement in the transversal section
and parenchyma structures in the tangential section.

Building upon these observations, a further analysis on the use of
ombinations of anatomical sections was done, specifically transversal
ith tangential (Tr + T) and also all sections combined (Tr + 𝑇 + R).
he goal is to investigate whether the complementary information from
ultiple sections can enhance the accuracy, and if so, to what extent.

ncorporating more than one anatomical section allows the model to
harness a broader spectrum of wood features, potentially improving the
verall classification performance. The corresponding results are listed
n Table 4.

The discussion of the results begins with the model’s performance on
the original dataset, which has fewer images per class compared to the
other datasets. As the results suggest, this dataset yielded the lowest
accuracy among all datasets, with the highest accuracy of 93.2 ± 0.6
obtained when all the anatomical sections are considered using the PFM
fusion strategy and the ConvNext XLarge backbone.

In contrast, the accuracy of the model dramatically improved when
increased the number of images per class in the datasets. For instance,
on the 1000 × 500 dataset, it reached an accuracy of 99.3 ± 0.2
all anatomical sections, SFC fusion strategy and ConvNext XLarge
ackbone), and on the 500 × 500 dataset, it reached an even higher
erformance of 99.8 ± 0.0 (all anatomical sections, SFC fusion strategy
nd ConvNetx Large). Notably, on the 500 × 500-OGRN dataset, which
ontains the same number of images but incorporates noise, the model
aintained a high accuracy of 98.2 ± 0.2 when using the ConvNext
Large backbone. This result underlines the observation that increasing

he number of samples per class in a dataset significantly enhances the
erformance of the model.

Another factor that has a positive impact on the model performance
is the inclusion of more anatomical sections in the analysis. This
is clear from the results obtained on the original dataset using the

onvNext Large backbone. When we considered the transversal section
see Table 3) and the ResNet18 backbone, the accuracy was 67.0 ± 0.90.
owever, the accuracy increased to 85.7 ± 0.5 upon the inclusion of

he tangential section and further increased to 87.4 ± 0.8 when also the
adial section was incorporated.

In terms of feature fusion strategies, one can see that SFC generally
outperforms PFM. However, it should be noted that the SFC strategy
results in a larger feature vector due to concatenation, which may,
sometimes, be a disadvantage as it can reduce the efficiency of the
classification step. On the other hand, PFM allows for a better control
f the number of features regardless of the number of terms involved
n the summations.

Finally, the comparison of different backbones reveals some inter-
esting insights. Although ResNet18 generally outperforms ResNet50,
especially when using SFC, the ConvNext backbones display superior
performance across all datasets, regardless of the combination of
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Fig. 4. Confusion matrices for the GAP results across the three anatomical sections: (a) Transversal, (b) Tangential, and (c) Radial.
sections and the fusion strategy considered. Given that they have
a considerably larger size, better pre-training and a more advanced
architecture design compared to the ResNets, this was an expected
result.

3.2. RADAM results

This section details the results obtained with the RADAM feature ex-
traction method. Similar to GAP, the performance was evaluated across
different datasets starting with the analysis of individual anatomical
sections. The results are listed in Table 5.
7 
The results obtained with RADAM mirror the previous observations
for GAP. Both the Tr and 𝑇 sections appear to have stronger discrimina-
tive capabilities compared to the R section. The superior performance of
these sections may be attributed to their distinctive cellular structures
and arrangements that RADAM effectively captures, thereby providing
more characteristic features for the wood species identification task.

The results for each anatomical section in the RADAM approach
highlight distinct patterns of misclassification. For the transversal sec-
tion (Fig. 5a), Chrysophyllum africanum is frequently confused with
Pentaclethra eetveldeana, possibly due to similarities in vessel arrange-
ment. The tangential section (Fig. 5b) shows accurate identification of
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Table 4
Accuracies (expressed as percentages) and standard deviations of SVM using GAP features for different combinations of
anatomical sections, and each fusion strategy, dataset and backbone. The best results on each dataset are highlighted in
bold.

Backbone

Dataset Combination Fusion Strategy ResNet18 ResNet50 ConvNext Large ConvNext XLarge

Original Tr+T SFC 85.70±0.50 76.90±0.60 91.20±0.70 91.80±0.70
PFM 84.70±0.80 78.30±0.60 90.5±0.60 91.30±0.40

Tr+T+R SFC 87.40±0.90 80.80±0.50 92.50±0.50 93.10±0.70
PFM 86.40±0.90 83.0 ±0.50 92.10±0.60 93.20±0.60

1000 × 500 Tr+T SFC 95.10±0.50 93.00±0.50 98.90±0.20 99.00±0.30
PFM 92.80±0.60 93.20±0.50 98.70±0.40 98.60±0.40

Tr+T+R SFC 96.80±0.40 94.50±0.40 99.20±0.30 99.30±0.20
PFM 95.00±0.40 94.90±0.40 98.80±0.20 98.90±0.30

500 × 500 Tr+T SFC 97.80±0.10 97.50±0.10 99.80±0.10 99.80±0.00
PFM 96.00±0.20 97.00±0.10 99.50±0.10 99.60±0.10

Tr+T+R SFC 97.20±0.30 98.30±0.20 99.80±0.00 99.80±0.10
PFM 97.00±0.20 97.70±0.10 99.60±0.10 99.70±0.10

500 × 500-OGRN Tr+T SFC 92.40±0.40 89.5±0.40 97.20±0.30 97.90±0.20
PFM 89.60±0.50 89.80±0.50 96.30±0.30 97.50±0.20

Tr+T+R SFC 93.40±0.40 92.50±0.50 97.70±0.20 98.20±0.20
PFM 91.10±0.40 92.50±0.50 97.00±0.30 97.90±0.20
Table 5
Accuracies (expressed as percentages) and standard deviations of SVM using RADAM features
for each individual anatomical section, dataset and backbone. The best results on each dataset
are highlighted in bold.

Backbone

Dataset Section ResNet18 Resnet50 ConvNext Large ConvNext XLarge

Original Tr 77.00±0.50 77.20±0.70 86.10±0.70 87.30±0.70
T 82.00±0.40 83.70±0.70 90.30±0.90 90.50±0.60
R 69.70±0.80 68.90±0.60 81.70±0.90 83.60±0.90

1000 × 500 Tr 94.80±0.40 94.30±0.50 97.90±0.30 98.30±0.30
T 91.00±0.50 91.90±0.30 96.90±0.30 96.70±0.50
R 88.80±0.40 88.70±0.70 95.00±0.30 95.30±0.30

500 × 500 Tr 97.30±0.20 97.50±0.20 99.10±0.10 99.40±0.10
T 95.50±0.10 96.70±0.20 99.00±0.10 98.90±0.10
R 90.80±0.30 91.90±0.20 96.80±0.20 96.20±0.10

500 × 500-OGRN Tr 87.50±0.20 87.60±0.40 94.70±0.30 94.80±0.40
T 88.20±0.50 90.00±0.30 95.50±0.30 96.40±0.30
R 75.30±0.50 78.10±0.50 88.70±0.30 88.70±0.60
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Leplaea laurentii, but with confusion between Pericopsis elata and Leplaea
laurentii, likely due to similar parenchyma structures. Finally, the radial
ection (Fig. 5c) reveals significant misclassification between Albizia
adianthifolia and Newtonia leucocarpa, possibly due to close ray and
racheid patterns. These results suggest that while the RADAM method
s robust, certain anatomical sections, particularly the radial section,
xhibit challenges in species differentiation. By leveraging information
rom multiple sections, classification accuracy can be improved across
pecies.

These observations led further investigation into the combination of
natomical sections, specifically Tr + 𝑇 and Tr + 𝑇 + R, and also testing
ifferent feature fusion strategies, with the intention of complement-
ng information from different sections to improve the classification
ccuracy. The results are shown in Table 6.

The discussion of the results begins with the model’s performance
on the original dataset, reaching its highest accuracy of 94.8 ± 0.5 when
all anatomical sections are considered using the PFM feature fusion
strategy and ConvNext XLarge.

However, a remarkable performance improvement was observed as
the number of images per class in the datasets increased. Specifically,
the model accuracy increased to 99.50 ± 0.2 on the 1000 × 500 dataset
(all anatomical sections, SFC strategy and ConvNext XLarge), while on
the 500 × 500 dataset it reached a nearly perfect score of 99.9 ± 0.0
multiple configurations) and finally on the 500 × 500-OGRN dataset
he model maintained a good performance of 98.7 ± 0.2 (multiple
onfigurations). These results, similar to the previous section, confirm
he model’s enhanced performance with an increase in the number of

samples per class in the dataset.
Furthermore, the inclusion of more anatomical sections in the anal-

ysis also increased the accuracy of the RADAM model. For instance,
8 
considering only the transversal section in the original dataset using
the ResNet18 backbone yielded an accuracy of 77.0 ± 0.5 (see Table 5,
which increased to 90.2 ± 0.7 when including the tangential section, and
further improved to 91.2 ± 0.6 when incorporating the radial section,
using the SFC strategy.

As for the feature fusion strategies, in general, SFC continues to
be better than PFM, but we can note that there are some cases, for
example, the ConvNext Large backbone on the original dataset with all
anatomical sections, where PFM outperforms SFC.

Lastly, the results show a similar comparison of the backbones as
in the previous section, where in many cases ResNet18 outperforms
ResNet50, but in general the ConvNexts delivered the best performance
across all datasets regardless of the combination of sections and the
fusion strategy considered.

3.3. Overall comparison

This subsection presents the main results for the four distinct
atasets, taking into account different combinations of anatomical
ections for the methods introduced in this study, as well as the
pproach proposed by da Silva et al. (2022), which applies LPQ on each

section, uses a random forest classifier on each section separately and
further concatenates the probability matrices obtained in the classifica-
tion process as input to a logistic regression model. A comprehensive
omparison of these results is presented in Table 7.

An observation that can be made from this comparison is that both
ethods proposed in this study consistently surpass the performance

f the approach by da Silva et al. (2022), regardless of the dataset
mployed or the combination of anatomical sections considered. Fur-

thermore, among our proposed methods, RADAM exhibits superior
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Fig. 5. Confusion matrices for RADAM results across the three anatomical sections: (a) Transversal, (b) Tangential, and (c) Radial.
performance compared to GAP, demonstrating its robustness across
different datasets, anatomical sections and feature fusion strategies.

3.4. Leave-k-trees-out

In this study, the method’s performance was also analyzed using
the leave-k-trees-out cross-validation strategy, as used by da Silva et al.
(2022). This cross-validation approach involves segregating all samples
from a single tree for each species into the test set, thereby ensuring
complete independence between the training and test sets in terms of
specimens. Consequently, 165 samples were allocated for testing and
640 for training.
9 
Table 8 presents a comparison among GAP, RADAM and the method
proposed by da Silva et al. (2022). All methods were evaluated under
the leave-k-trees-out cross-validation scheme. For our methods, the
combination of all three anatomical sections and the SFC strategy were
used.

The results show a notable performance disparity. While the pre-
vious method exhibited accuracies ranging from 22.00% to 30.00%
across different datasets, both GAP and RADAM demonstrated signif-
icantly higher accuracies, with RADAM slightly outperforming GAP.
These results suggest that our method, although showing a slight
inferior performance compared to the traditional cross-validation con-
figuration, still surpasses the performance of da Silva et al. (2022).
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Table 6
Accuracies (expressed as percentages) and standard deviations of SVM using RADAM features for different combinations
of anatomical sections, and each fusion strategy, dataset and backbone. The best results on each dataset are highlighted
in bold.

Backbone

Dataset Combination Fusion Strategy ResNet18 ResNet50 ConvNext Large ConvNext XLarge

Original Tr+T SFC 90.20±0.70 89.00±0.60 93.50±0.50 94.00±0.60
PFM 88.60±0.70 88.20±0.60 92.60±0.50 93.60±0.50

Tr+T+R SFC 91.20±0.60 90.60±0.40 94.00±0.70 94.30±0.70
PFM 90.90±0.80 89.60±0.80 94.70±0.60 94.80±0.60

1000 × 500 Tr+T SFC 98.10±0.40 98.00±0.30 99.40±0.30 99.30±0.30
PFM 97.70±0.30 97.90±0.40 99.20±0.30 99.20±0.30

Tr+T+R SFC 98.50±0.40 98.60±0.30 99.60±0.20 99.50±0.20
PFM 97.70±0.40 98.10±0.40 99.40±0.20 99.40±0.20

500 × 500 Tr+T SFC 99.40±0.10 99.50±0.10 99.90±0.00 99.90±0.00
PFM 98.90±0.10 99.30±0.10 99.90±0.10 99.80±0.00

Tr+T+R SFC 99.50±0.10 99.60±0.10 99.90±0.00 99.90±0.10
PFM 99.10±0.10 99.30±0.10 99.80±0.00 99.80±0.00

500 × 500-OGRN Tr+T SFC 96.10±0.30 95.70±0.30 98.70±0.20 98.70±0.20
PFM 94.70±0.40 95.20±0.40 98.50±0.30 98.30±0.20

Tr+T+R SFC 96.30±0.30 96.20±0.30 98.70±0.20 98.70±0.20
PFM 95.40±0.40 95.60±0.40 98.50±0.30 98.60±0.20
Table 7
Accuracy (expressed as percentages) and standard deviations of the three methods for
different datasets and different anatomical section combinations. For GAP and RADAM,
we used the ConvNext XLarge backbone and the SFC strategy when using more than one
anatomical section. The best results on each dataset are highlighted in bold.

Dataset Anatomical Section Method
GAP RADAM da Silva et al. (2022)

Original Tr 82.2±1.10 87.3±0.70 56.0±2.00
T 88.2±0.60 90.5±0.60 42.0±2.00
R 77.6±0.80 83.6±0.90 42.0±2.00

Tr + T 91.8±0.70 94.0±0.60 62.0±4.00
Tr + T + R 93.1±0.70 94.3±0.70 66.0±2.00

1000 × 500 Tr 96.3±0.40 98.3±0.30 71.0±2.00
T 95.4±0.40 96.7±0.50 71.0±1.00
R 91.5±0.40 95.3±0.30 52.0±1.00

Tr + T 99.0±0.30 99.3±0.30 85.0±2.00
Tr + T + R 99.3±0.20 99.5±0.20 91.0±2.00

500 × 500 Tr 98.7±0.20 99.4±0.10 75.0±2.00
T 97.5±0.10 98.9±0.10 69.0±1.00
R 92.9±0.30 96.2±0.10 54.0±1.00

Tr + T 99.8±0.00 99.9±0.00 86.0±2.00
Tr + T + R 99.8±0.10 99.9±0.10 95.0±1.00

500 × 500-OGRN Tr 92.6±0.60 94.8±0.40 38.0±2.00
T 93.5±0.40 96.4±0.30 34.0±1.00
R 83.7±0.50 88.7±0.60 27.0±1.00

Tr + T 97.9±0.20 98.7±0.20 48.0±2.00
Tr + T + R 98.2±0.20 98.7±0.20 62.0±3.00
In summary, the leave-k-trees-out cross-validation approach has
emonstrated the robustness of GAP and RADAM in the context of sig-
ificant sample variability when characterizing different trees/
pecimens.

4. Conclusions

In this study, we investigated the efficacy of two feature extraction
echniques (GAP and RADAM) used in conjunction with an SVM clas-

sifier for the purpose of wood species identification through texture
analysis on images from three different anatomical sections. Our results
indicate that SVM, when employing either GAP or RADAM, surpasses
he results of da Silva et al. (2022), demonstrating their effectiveness in

the context of wood species identification through texture analysis tech-
niques. Our research also revealed that combining multiple anatomical
sections can significantly enhance the performance.

Among the two methods proposed in this study, RADAM consis-
ently demonstrated superior performance across different datasets,

anatomical section combinations and feature fusion strategies. This
highlights the robustness of RADAM in handling diverse conditions and
reinforces its potential as an effective tool, not only for the recognition
of macroscopic textures, but also for wood species identification using

microscopic images.

10 
Table 8
Accuracy comparison of GAP, RADAM and the method of da Silva et al. (2022),
analyzed with the leave-k-trees-out cross validation strategy. For our methods, we used
all three anatomical sections and the SFC strategy.

Original 1000 × 500 500 × 500 500 × 500-OGRN

da Silva et al. (2022) 30.00 28.00 27.00 22.00
GAP 92.17 91.87 95.03 93.96
RADAM 93.98 94.28 95.03 94.12

Our findings suggest that RADAM can potentially automate wood
species identification, reducing the need for specialized anatomical
knowledge and enabling more efficient and scalable methods. This
is important for the timber industry, where accurate and fast identi-
fication of wood species is critical for supply chain monitoring and
regulation. However, while being a promising approach, the reliance of
the methods on microscopic images introduces challenges in practical
applications. In real-world scenarios, capturing high-quality micro-
scopic images at scale may be impractical, especially dealing with large
physical timber boards. The main limitation of this study thus lies in
obtaining precise microscopic details on the images.

To address this problem, future research should explore the adapta-
tion of the methods studied to macroscopic images, which are easier to
capture in industrial environments. Additionally, other factors such as
image resolution or the use of other neural network architectures such
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as Vision Transformers (ViTs) should be explored.
In summary, the work proposed here represents a significant step

orward in the field of wood species identification. Through exploiting
he computational efficiency of pre-trained neural network models and
dvanced feature extraction techniques such as RADAM, we provided
 robust and efficient approach to wood species identification, opening
oors to more sustainable and responsible forestry practices.
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